
Fusion of Low-Cost Imaging and Inertial
Sensors for Navigation

Major M. Veth,Air Force Institute of Technology
J. Raquet,Air Force Institute of Technology

BIOGRAPHY

Major Mike Veth is a Ph.D. student in the Department of
Electrical and Computer Engineering at the Air Force In-
stitute of Technology. His current research focus is on the
fusion of imaging and inertial systems for navigation. He
received his M.S. in Electrical Engineering from the Air
Force Institute of Technology, and a B.S. in Electrical En-
gineering from Purdue University. In addition, Major Veth
is a graduate of the Air Force Test Pilot School.

John Raquet is an associate professor in the Department
of Electrical and Computer Engineering at the Air Force
Institute of Technology, where he is also the Director of
the Advanced Navigation Technology Center. He has been
involved in navigation-related research for over 15 years.

ABSTRACT

Aircraft navigation information (position, velocity, and at-
titude) can be determined using optical measurements from
imaging sensors combined with an inertial navigation sys-
tem. This can be accomplished by tracking the locations of
optical features in multiple images and using the resulting
geometry to estimate and remove inertial errors.

A critical factor governing the performance of image-aided
inertial navigation systems is the robustness of the fea-
ture tracking algorithm. Previous research has shown the
strength of rigorously coupling the image and inertial sen-
sors at the measurement level using a tactical-grade inertial
sensor. While the tactical-grade inertial sensor is a reason-
able choice for larger platforms, the greater physical size
and cost of the sensor limits its use in smaller, low-cost
platforms.

In this paper, an image-aided inertial navigation algorithm
is implemented using a multi-dimensional stochastic fea-
ture tracker. In contrast to previous research, the algo-
rithms are specifically evaluated for operation using low-
cost, CMOS imagers and MEMS inertial sensors. The per-
formance of the resulting image-aided inertial navigation
system is evaluated using Monte Carlo simulation and ex-

perimental data and compared to the performance using
more expensive inertial sensors.

INTRODUCTION

Motivation

As mentioned in our previous research [18], [24], [22],
the benefits of tightly integrating navigation sensors, such
as inertial measurement units (IMU) and global position-
ing system (GPS) receivers, is well-known. The compli-
mentary characteristics of the two sensors allow the inte-
grated system to perform at levels which are difficult to
attain with either sensor alone (see [3]). As a result, in-
tegrated IMU/GPS systems have become common, espe-
cially in military-grade navigation systems. Unfortunately,
GPS signals are not available in all locations, which moti-
vates the development of a non-GPS based navigation ref-
erence which can aid an inertial navigation system.

One non-GPS navigation approach is to integrate a cam-
era with an inertial sensor [19], [17], [2]. This technique
has some important advantages. Foremost, the sensors can
operate in environments where GPS is difficult to receive
(e.g., indoors, under trees, underwater, etc.). Secondly, the
sensors are completely passive and do not require the trans-
mission (or reception) of radio signals. As a result, optical
and inertial sensors are immune to disruptions in the radio
spectrum.

Previous work has shown the value of fusing images and
inertial measurements for navigation [23]. In this paper, an
image-aided inertial navigation algorithm is implemented
using a multi-dimensional stochastic feature tracker. In
contrast to previous research, the algorithms are specifi-
cally evaluated for operation on low-cost, complementary
metal-oxide semiconductor (CMOS) imagers and micro-
electro-mechanical systems (MEMS) consumer-grade iner-
tial sensors. The performance of the resulting image aided
inertial navigation system is evaluated using Monte Carlo
simulation and experimental data and compared to the per-
formance using tactical-grade inertial sensors. This effort
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is part of ongoing research into fusion of imaging and iner-
tial sensors for long-term autonomous navigation.

Current Methods

It is well-known that optical measurements provide ex-
cellent navigation information, when interpreted properly.
Optical navigation is not new. Pilotage is the oldest and
most natively familiar form of navigation to humans and
other animals. For centuries, navigators have utilized me-
chanical instruments such as astrolabes, sextants, and drift-
meters [14] to make precision observations of the sky and
ground in order to determine their position, velocity, and
attitude.

The difficulty in using optical measurements for au-
tonomous navigation (that is, without human intervention)
has always been in the interpretation of the image, a diffi-
culty shared with Automatic Target Recognition (ATR). In-
deed, when celestial observations are used, the ATR prob-
lem in this structured environment is tractable, and auto-
matic star trackers are widely used for space navigation and
ICBM guidance [6, 15, 16]. When ground images are to
be used, the difficulties associated with image interpreta-
tion are paramount. At the same time, the problems asso-
ciated with the use of optical measurements for navigation
are somewhat simpler than ATR. Moreover, recent develop-
ments in feature tracking algorithms, miniaturization, and
reduction in cost of inertial sensors and optical imagers,
aided by the continuing improvement in microprocessor
technology, motivates the use of inertial measurements to
aid the task of feature tracking in image sequences.

Image-aiding methods are typically classified as either
feature-based or optic flow-based, depending on how the
image correspondence problem is addressed. Feature-
based methods determine correspondence for “landmarks”
in the scene over multiple frames, while optic flow-based
methods typically determine correspondence for a whole
portion of the image between frames. A good reference
on image correspondence is [8]. Optic flow methods have
been proposed generally for elementary motion detection,
focusing on determining relative velocity, angular rates, or
obstacle avoidance [5].

Feature tracking-based navigation methods have been pro-
posed both for fixed-mount imaging sensors or gimbal
mounted detectors which “stare” at the target of interest,
in a manner similar to the gimballed infrared seeker on
heat-seeking, air-to-air missiles. Many feature tracking-
based navigation methods exploit knowledge (eithera pri-
ori, through binocular stereopsis, or by exploiting terrain
homography) of the target location and solve the inverse
trajectory projection problem [1,12]. If noa priori knowl-
edge of the scene is provided, egomotion estimation is
completely correlated with estimating the scene. This is re-

ferred as the structure from motion (SFM) problem. A the-
oretical development of the geometry of fixed-target track-
ing, with noa priori knowledge is provided in [13]. An on-
line (Extended Kalman Filter-based) method for calculat-
ing a trajectory by tracking features at an unknown location
on the Earth’s surface, provided the topography is known is
given in [4]. Finally, navigation-grade inertial sensors and
terrain images collected on a T-38 “Talon” were processed
and the potential benefits of optical-aided inertial sensors
are experimentally demonstrated in [17].

A rigorous, stochastic projection algorithm is presented
in [24], which incorporates inertial measurements into a
predictive feature transformation, effectively constraining
the resulting correspondence search space. The algorithm
was incorporated into an extended Kalman filter and tested
experimentally in [23] using a tactical-grade inertial sensor.
The integrated system demonstrated at least two orders of
magnitude improvement over the inertial-only navigation
solution.

In this paper, the method of stochastic projections [24] is
used as the basis for tightly integrating a low-cost MEMS
inertial and CMOS imaging sensor using an Extended
Kalman Filter (EKF). In the following section, the inte-
gration architecture is presented, which includes the under-
lying assumptions, the inertial mechanization algorithms,
EKF state model, measurement model, and feature track-
ing concept.

DEVELOPMENT

The method proposed in this paper employs an extended
Kalman filter (EKF) algorithm [9, 10] to recursively esti-
mate the navigation state and associated errors by tracking
the pixel locations of stationary objects in an image-aided
inertial system.

Assumptions

This method is based on the following assumptions.

• A strapdown inertial measurement unit (IMU) is
rigidly attached to one or more cameras. Synchro-
nized raw measurements are available from both sen-
sors.

• The camera images areas in the environment which
contain some stationary objects.

• Binocular measurements are available which provide
an indication of range to objects in the environment.

• The inertial and optical sensors’ relative position and
orientation is known (see [22] for a discussion of bore-
sight calibration procedures).



Algorithm Description

The system parameters (see Table 1) consist of the nav-
igation parameters (position, velocity, and attitude), iner-
tial sensor biases, and a vector describing the location of
landmarks of interest (y). The navigation parameters are
calculated using body-frame velocity increment (∆vb) and
angular increment (∆θb

ib) measurements from the inertial
navigation sensor which have been corrected for bias er-
rors using the current filter-computed bias estimates. These
measurements are integrated from an initial state in the nav-
igation (local-level) frame using mechanization algorithms
described in [21].

Table 1: System Parameter Definition

Parameter Description
pn Vehicle position in navigation frame

(northing, easting, and down)
vn Vehicle velocity in navigation frame

(north, east, down)
Cn

b Vehicle body to navigation frame DCM
ab Acclerometer bias vector
bb Gyroscope bias vector
tn
m Location of landmarkm in the

navigation frame (one for each landmark
currently tracked)

db Camera-to-IMU lever arm in body frame
Cb

c Camera-to-IMU orientation DCM

An Extended Kalman Filter is constructed to estimate the
errors in the calculated system parameters. In order to min-
imize the effects of linearization errors, the system param-
eters are periodically corrected by removing the current er-
ror estimate [9]. A block diagram of the system is shown
in Figure 1.

The position, velocity, and attitude errors were modeled
as a stochastic process based on the well-known Pinson
navigation error model [21]. The accelerometer and gyro-
scopic bias errors were each modeled as a first-order Gauss-
Markov process [9], based on the specification for the iner-
tial measurement unit (IMU). The landmarks are modeled
as stationary with respect to the Earth. A small amount
of process noise is added to the state dynamics to promote
filter stability [10].

Landmark Track Maintenance

In a practical system, the number of Kalman Filter states
is limited by available computer resources. As a result, the
number of landmarks actively tracked must be constrained.
This inherent limitation motivates the implementation of a
track maintenance algorithm.
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Figure 1: Image-aided inertial navigation filter block di-
agram. In this filter, the location of stationary objects are
tracked and used to estimate and update the errors in an
inertial navigation system. The inertial navigation system
is, in turn, used to support the feature tracking loop.

The general concept for the track maintenance algorithm is
to add and prune landmark tracks in order to provide the
“best” navigation information to the filter. Although the
optimal landmark choices are highly dependent on the tra-
jectory and scene, some general guidelines were used in the
track maintenance algorithm.

In general, features which can be easily and accurately
tracked for long periods of time provide the best naviga-
tion information. This implies choosing features which
are: strong and easily identified (to help maintain track), lo-
cally distinct (to eliminate false correspondence), and well-
separated in image space (to maximize filter observability).
Thus, when Kalman Filter landmark track states are avail-
able, the feature space of the current image is searched and
new landmarks are added based on the above criteria. The
filter states are augmented in accordance with the stochas-
tic projection algorithm defined in [24].

In order to maintain only the best tracks, stale landmark
tracks (i.e., no successful correspondence available for a
given period of time) are pruned by removing the associ-
ated filter states. Other track maintenance approaches are
possible which could theoretically improve the track per-
formance (e.g., semi-causal, multiple model, or velocity
prediction), however these approaches will not be pursued
in this paper.

Measurement Model

In order to exploit the synergistic properties of optical and
inertial sensors, the navigation and feature tracking algo-
rithms are tightly-coupled. This results in a slight mod-
ification to the standard Kalman filter update and propa-
gation cycles in order to incorporate the feature tracking



loop. The tracking loop is responsible for: incorporating
new landmark tracks, using stochastic projections to pre-
dict and match features between images, providing filter
measurements, and deleting stale landmarks from the filter.

The Kalman filter assists the tracking algorithm by main-
taining and propagating the minimum mean-square error
state estimate. This provides the stochastic projections
which help improve the speed and robustness of the track-
ing loop.

The tracking loop incorporates new landmark tracks when
necessary by determining an initial estimate of the land-
mark location (using either a terrain model or binocu-
lar stereopsis combined with the current navigation state
vector). This estimate, along with the calculated covari-
ance and cross-correlation matrices are augmented into the
Kalman filter state vector and covariance matrix. Details
on the mathematics involved in the calculation of the above
process are based on the stochastic projection model de-
scribed in [24].

After the landmark tracks are properly augmented into the
Kalman filter, the standard propagation algorithms are used
to predict the augmented state to the time of the next image.
The location of each landmark (along with arbitrary uncer-
tainty ellipsoid) can then be projected into the feature space
of the new image. In this paper, the feature space corre-
sponds to a two-dimensional pixel location and associated
uncertainty ellipse. The tracking algorithm then searches
this uncertainty ellipse for a feature which has similar char-
acteristics to the reference feature and is distinct. In this
paper, a2−σ ellipse was used. An example of feature pre-
diction is shown in Figure 2. The reader is referred to [24]
for more details regarding the feature prediction algorithm.

Figure 2: Stochastic feature projection. Optical features
of interest are projected into future images using inertial
measurements and stochastic projections.

Once the landmark tracker has determined a corresponding
match, the pixel location of the feature, corrected for opti-
cal distortion, is used to update the navigation state. The
associated measurement equations are described in further
detail in [23].

Measurement Accuracy Considerations

The inertial-aided feature correspondence algorithm pre-
sented in the previous section leverages inertial measure-
ments to statistically constrain the feature correspondence
search between images. As shown in [24], the correspon-
dence search region is the projection of a random vector
into the feature space. The statistics of this random vector
are influenced by the inertial measurement errors, the time
between images, the motion trajectory, and the scene itself.
Examining this relationship allows the designer to predict,
and potentially compensate for, the effects of lower quality
inertial sensors by varying the image sampling rate.

As a result of this relationship, the image sample rate is
increased by 2.5 times in order to compensate for the lower
performance level of the consumer-grade IMU compared to
the tactical-grade sensor. This resulted in a 2.5 Hz image
collection rate, which was the upper limit of the recording
hardware.

SYSTEM TESTS

The imaging and inertial fusion navigation algorithm is
evaluated using both simulated and experimental ground
profiles. The profiles are designed to provide a range of
image types in order to exercise the feature tracking algo-
rithm. The simulation and results are presented in the next
section.

The data collection system consisted of a consumer-grade
MEMS IMU and two digital cameras (see Figure 3). The
IMU was a Crista consumer-grade MEMS unit which mea-
sured acceleration and angular rate at 100 Hz. The digital
cameras were both Pixelink A-741 machine vision cameras
which incorporated a global shutter feature and a Firewire
interface. The lenses were wide-angle Pentax lenses with
approximately 90 degrees field of view. The sensors were
mounted on an aluminum plate and calibrated using pro-
cedures similar to those described in [22]. Images were
captured at approximately 2.5 Hz. In addition, a Honey-
well HG1700, tactical-grade inertial measurement unit was
co-mounted on the platform in order to provide a one-to-
one performance comparison between different grades of
inertial sensors.

Simulation

The algorithm was tested using a Monte Carlo simulation



Figure 3: Data collection system. The data collection
system consisted of a consumer-grade MEMS IMU and
monochrome digital cameras. A tactical-grade IMU was
co-mounted on the platform in order to provide a perfor-
mance comparison between different grades of inertial sen-
sors.

of a standard indoor profile. The profile consisted of a
straight corridor, designed to be similar to the indoor ex-
perimental data collection.

An accurate simulation of the navigation environment re-
quires simulating the performance of the sensors in re-
sponse to a true motion trajectory. The trajectory was gen-
erated using ProfGen version 8.19 software package [11].
For each Monte Carlo navigation simulation run, the iner-
tial sensor measurements are generated using the true tra-
jectory and an inertial sensor error model.

Because of the inherent complexity of the optical environ-
ment, it is beyond the scope of this paper to generate sim-
ulated images. Instead, a simulated feature set was cre-
ated by randomly distributing features along a corridor sur-
rounding the true trajectory. The features are each given
random descriptor vectors in order to exercise the feature
tracking algorithm. While this optical simulation method
is appropriate for testing the image and inertial fusion al-
gorithm, the results are not directly comparable to the real
system performance, because imaging issues such as light-
ing conditions, motion blur, and affine changes in the fea-
ture descriptor due to pose changes are not modeled.

The simulated corridor was 3 meters wide, 3 meters high,
and approximately 300 meters long. Features were ran-
domly generated on the walls, floor and ceiling of the cor-
ridor with an average spacing of 0.25 features per square
meter. Each feature was given a random primary length and
orientation, which, combined with the true pose of the sen-
sor, resulted in accurately simulated scale and orientation
parameters in feature space. After a 60-second stationary

alignment, the sensor platform accelerated to 0.5 meters per
second, maintained this velocity until the end of the corri-
dor, then accelerated to a stop at the end. The platform
remained stationary for 60 seconds after coming to a stop.
This resulted in a 660-second image and inertial navigation
profile. Simulated images are collected at 2 Hz.

A Monte Carlo simulation was conducted using inertial
sensor models representing the H1700 tactical-grade IMU
and the Crista consumer-grade IMU. Each simulation con-
sisted of 60 runs, each with randomly generated inertial
measurement errors due to random walks, sensor bias, and
sensor scale-factor errors. In order to mitigate any poten-
tial effects due to the location of the features in the sim-
ulated environment, the feature locations and descriptors
were randomly generated every 20 runs.

The position errors using the tactical-grade IMU are shown
in Figures 4. As expected, the inertial and imaging mea-
surement errors accumulate, resulting in position drift.
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Figure 4: Simulated 60-run Monte Carlo position error re-
sults for indoor profile with a tactical-grade inertial sensor
and image aiding using landmarks of opportunity. The po-
sition error sample functions are indicated by blue dotted
lines. The ensemble mean and standard deviation are indi-
cated by the green and red solid lines, respectively.

The position errors using the consumer-grade IMU are
shown in Figures 5. In addition to proportionally larger er-
rors in position, significant excursions in position are noted,
which are the effects of increased attitude errors.

Root-sum-squared (RSS) errors are analyzed in order to
provide a one-dimensional metric for a more direct com-
parison of the simulated system performance for different
profiles. The RSS errors comparing the free-inertial and
image-aided performance is shown in Figures 6-8. Over the
10-minute indoor profile, incorporating the image-aiding
measurements improves the errors for both the consumer
and tactical-grade sensors by many orders of magnitude.
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Figure 5: Simulated 60-run Monte Carlo position error
results for indoor profile with a consumer-grade inertial
sensor and image aiding using landmarks of opportunity.
The position error sample functions are indicated by blue
dotted lines. The ensemble mean and standard deviation
are indicated by the green and red solid lines, respectively.

In addition, the image-aided consumer-grade sensor nearly
equals the position error performance of the image-aided
tactical-grade sensor, until the consumer-grade sensor be-
gins to show some attitude divergences after approximately
400 seconds.

In the next section, the experimental data collection profiles
and results are presented.

Experiment

The algorithm is tested experimentally using two ground
navigation profiles designed to examine the operation of
the feature tracking system in a real-world environment.
The profile consisted of a closed path in an indoor environ-
ment. The path began and ended at the same location and
orientation in the Advanced Navigation Technology (ANT)
Center laboratory, at the Air Force Institute of Technology.
As in the previous profile, the data collection began with a
10-minute stationary alignment period. After the alignment
period, the sensor was moved in a 10-minute loop around
the hallways of the building. In contrast to the previous
profile, the sensor was pointed primarily in the direction of
travel. No prior knowledge was provided to the algorithm
regarding the location of features or structure of the envi-
ronment. A sample image from the indoor profile is shown
in Figure 9.

The indoor profile presents the algorithm with different
challenges from a feature tracking perspective. The indoor
environment consists of repetitive, visually identical fea-
tures (e.g., floor tiles, lights, etc.), which can easily cause
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Figure 6: Simulated 60-run Monte Carlo root-sum-
squared (RSS) horizontal position error for indoor pro-
file using both consumer-grade and tactical-grade iner-
tial sensors. The results are shown for four cases: 1)
consumer-grade free inertial, 2) consumer-grade opportu-
nity landmark tracking, 3) tactical-grade free inertial, and
4) tactical-grade opportunity landmark tracking.

confusion for the feature tracking algorithm. In addition,
reflections from windows and other shiny surfaces might
not be interpreted properly by the filter and could poten-
tially result in navigation errors. Finally, the lower light
intensity levels and large areas with poor contrast (e.g.,
smooth, featureless walls) presents a relatively stark fea-
ture space. The indoor profile is performed twice for both
the tactical and navigation-grade sensors.

The filters’ estimates of the trajectories are overlayed on
a floor plan of the building in Figures 10 and 11 for the
tactical and consumer-grade inertial sensors, respectively.
In each figure, a comparison is made between the fused
image-aided inertial trajectory estimate, the image-aided
inertial trajectory with stochastic constraints disabled, and
a free inertial trajectory. For both tactical and consumer-
grade sensors, the estimated trajectory generally corre-
sponds to the building’s hallways, with excursions of less
than 3 meters. In addition, the results of the free-inertial
trajectories show the inherent lack of accuracy of the in-
ertial sensor. With stochastic constraints purposely dis-
abled, the trajectory estimates show relatively large trajec-
tory errors due to false correspondence matches. This il-
lustrates the catastrophic effects of incorporating false up-
dates into an Extended Kalman Filter with inertial feedback
and demonstrates the inherent strength of applying robust
correspondence methods, and in particular stochastic con-
straints.

The filter’s estimated trajectory for the image-aided
consumer-grade sensor (run two) is examined in more de-
tail in Figure 14, where the estimated location of landmarks
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Figure 7: Simulated 60-run Monte Carlo root-sum-
squared (RSS) velocity error for indoor profile using both
consumer-grade and tactical-grade inertial sensors. The
results are shown for four cases: 1) consumer-grade free
inertial, 2) consumer-grade opportunity landmark track-
ing, 3) tactical-grade free inertial, and 4) tactical-grade
opportunity landmark tracking.

used for tracking are highlighted. Note the landmarks cor-
respond to the building walls, ceilings, and floors. More de-
tail of the start/stop area is shown in Figure 13. A compar-
ison of all image-aided inertial navigation results for both
the tactical and consumer-grade sensors is shown in Fig-
ure 12. The difference in the estimated start and stop lo-
cations shows the accumulated errors in the filter over the
path. Over the 10-minute profile, the path closure errors
are less than 5m in the horizontal plane and less than 5m
in the vertical for all sensors. Again, this is a significant
improvement over the free-inertial performance.

In each case, incorporation of image updates into the navi-
gation filter improves the position error by several orders
of magnitude over the respective inertial-only solutions.
In addition, the integrated consumer-grade inertial solu-
tion demonstrates nearly equivalent performance to the in-
tegrated tactical-grade inertial solution.
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Figure 8: Simulated 60-run Monte Carlo root-sum-
squared (RSS) attitude error for indoor profile using both
consumer-grade and tactical-grade inertial sensors. The
results are shown for four cases: 1) consumer-grade free
inertial, 2) consumer-grade opportunity landmark track-
ing, 3) tactical-grade free inertial, and 4) tactical-grade
opportunity landmark tracking.

Figure 9: Sample image from indoor data collection. The
indoor data collection presents the filter with man-made
features in an office environment. The crosses and ellipses
indicate the locations and uncertainty of currently tracked
landmarks.



Figure 10: Estimated path from indoor data collection (run
two) using tactical-grade inertial sensor. The filter’s esti-
mate of the path (indicated by the solid line) agrees well
with the known path (indicated by the dotted line). The
inertial-only best estimate of trajectory (indicated by the
dash-dotted line) and image-aided inertial with stochastic
constraints disabled (indicated by the dashed line) show
large errors in position and heading. The inertial-only so-
lution exceeds the scale of the image after 156 seconds.

Figure 11: Estimated path from indoor data collection (run
two) using consumer-grade inertial sensor. The filter’s es-
timate of the path (indicated by the solid line) agrees well
with the known path (indicated by the dotted line). The
inertial-only best estimate of trajectory (indicated by the
dash-dotted line) and image-aided inertial with stochastic
constraints disabled (indicated by the dashed line) show
large errors in position and heading. The inertial-only so-
lution exceeds the scale of the image after 11 seconds.

Approximate reference path
Tactical−grade run 1
Tactical−grade run 2
Consumer−grade run 1
Consumer−grade run 2

Figure 12: Performance comparison for image-aided tac-
tical and consumer-grade inertial sensors for indoor profile
runs one and two. The common start and stop location for
both runs is indicated by the “o” symbol. The estimated
stop location for each run is indicated by an “x” symbol.

Approximate reference path
Tactical−grade run 1
Tactical−grade run 2
Consumer−grade run 1
Consumer−grade run 2

Figure 13: Enhanced detail of the start/stop area illustrat-
ing the estimated trajectory and feature locations for both
the image-aided tactical and consumer-grade inertial sen-
sors for indoor profile runs one and two. The difference be-
tween the estimated start and stop location illustrates the
accumulated position error.



a) Entire path estimate b) First half of path with tracked feature locations

c) Second half of path with tracked feature locations d) Start/stop area detail

Figure 14: Estimated path and feature locations from indoor data collection (run two) for consumer-grade inertial sensor.
Pane (a) shows the entire path estimate. Pane (b) shows the first half of the path along with the estimated location of the
features (indicated by “x” symbols). Pane (c) shows the last half of the path and estimated feature locations. Pane (d) provides
detail of the start/stop area.



CONCLUSIONS

In this paper, an algorithm is presented which integrates
low-cost inertial and image sensors to provide an enhanced
navigation solution. The integration is accomplished using
a fusion technique designed to tightly-couple the respective
sensors using a statistically-rigorous feature transformation
algorithm.

The integrated system was tested using a combination of
Monte Carlo simulation and experimental data collections.
The simulation predicted a significant improvement by fus-
ing image and inertial measurements for both the consumer
and tactical-grade inertial sensors. In addition, the sim-
ulation revealed small differences in attitude-error stabil-
ity, which negatively influenced the long-term stability of
the integrated consumer-grade sensor over the integrated
tactical-grade sensor.

The experiment demonstrated multiple orders-of-
magnitude improvement between image-aided and
unaided inertial position solutions. Over the 10-minute,
unconstrained, indoor-profile, both integrated sensors ex-
hibited closed-path navigation errors of less than 5 meters,
which is a significant improvement over the respective
unaided systems.

In summary, this research develops a series of techniques
to provide autonomous, passive navigation by incorporat-
ing image and inertial measurements. The method demon-
strates navigation-quality performance using only low-cost
sensors and passive updates.

DISCLAIMER

The views expressed in this article are those of the au-
thor and do not reflect the official policy or position of the
United States Air Force, Department of Defense, or the U.S
Government.
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